نظرية القطوع المخروطية
قد اندمجت أغلب الهندسات الإغريقية والإسلامية فكونت نظرية القطوع المخروطية التي استُخدمت في المنشآت الهندسية وتصاميم المرايا لتركيز الضوء وفق نظرية الساعات الشمسية. يتشكل سطح المخروط الصلب المزدوج بسبب خطوط مستقيمة (مولدات) تتشعب من محيط الدائرة التي تسمى القاعدة وتمر في نقطة ثابتة تدل على الذروة (رأس المخروط) التي لا تقع في مستوى القاعدة، وتتولد القطوع المخروطية من قطع المخروط المزدوج بمستويات تقطع المولدات، أما شكل القطع المستوي الذي يبقى فيتحدد بالزاوية التي تتشكل بين المستوي والمولدات. قال أبلونيوس: «يمكن توليد ثلاثة قطوع مخروطية، ما خلا الدائرة، وهي: القطع الناقص والقطع المكافئ والقطع الزائد».
مخطوطة عربية تعود إلى القرن التاسع الميلادي، وهي ترجمة لكتاب أبلونيوس "المخروطات".
استخدم أبو سهل القوهي (نسبة إلى قوه في جبال طبرستان، توفي عام 1014م) نظرية القطوع المخروطية لتطوير إجراء مشهور لإنشاء مضلع منتظم ذي سبعة أضلاع هو المُسبّع (الشكل السباعي). كان أبو سهل القوهي واحداً من مجموعة علماء موهوبين اجتمعوا من مختلف أنحاء القطاع الشرقي للعالم الإسلامي برعاية أعيان الأسرة البويهية صاحبة النفوذ في بغداد. جاء أبو سهل من المنطقة الجبلية جنوب بحر قزوين لتسلية الناس في سوق بغداد بلعبة القوارير الزجاجية، ثم تحول إلى دراسة العلوم، فاهتم بأعمال أرخميدس، وكتب تعليقاً على الكتاب الثاني لـ"الكرة والأسطوانة"، وتركز اهتمامه الأساسي على القطوع المخروطية واستخداماتها في حل المسائل المتعلقة بإنشاء موضوعات هندسية معقدة، فبيّن، على سبيل المثال، كيف يمكن بوساطة القطوع المخروطية، إنشاء كرة ذات قطاع مماثل لقطاع دائرة معينة له مساحة سطح تساوي قطاع دائرة أخرى، كما شرح بالتفصيل كيف يمكن استخدام أداة لرسم قطوع مخروطية تُعرف باسم "الفرجار الكامل".
نقش لبوصلة أبي سهل القوهي المثالية لرسم القطوع المخروطية.
بيد أن أبا سهل القوهي وضع نصب عينيه طموحات أعظم؛ فقدم تعليمات مفصلة لإنشاء الشكل السباعي المنتظم. كان أرخميدس قد قدّم برهاناً يتعلق بالمسبّع المنتظم الموضوع داخل دائرة ويوحي برهانه بإمكان إنشاء الشكل السباعي، إلا أنه لم يُقدّم الإجراء الفعلي. كان ذلك شائعاً في عالم الرياضيات المجردة، ومن الصعب اشتقاق إجراء تدريجي بين الفينة والأخرى لإنشاء موضوعات رياضية معينة. وفي مثل تلك الحالات، كان العلماء يشغلون أنفسهم بالتأكيد - ولو قليلاً - على وجود إجراء كهذا، تاركين اكتشاف الإجراء التفصيلي للآخرين. وعلى الرغم من أن أرخميدس برهن على وجود المسبع، فإن كبار علماء الرياضيات الإغريق والمسلمين لم يستطيعوا إنشاءه فعلياً حتى قال أبو الجود، أحد علماء المسلمين في القرن العاشر: «ربما كان تنفيذ إنشائه أكثر صعوبة، وبرهانه أبعد من أن يكون مقدمة لذلك»، فكانت تلك الملاحظة تحدّياً لأبي سهل القوهي الذي استطاع بفضل معالجة رشيقة أن يقلّص المسألة إلى ثلاث خطوات، وبيّن أنها إذا عُكست أدت إلى إنشاء الشكل السباعي. بدأ أولاً بإنشاء قطع مخروطي على طول ضلع المسبّع، ثم ولّد قطاعاً خطياً مقطعاً وفق نسب معينة، ومن هذا القطاع، أنشأ مثلثاً ذا خصائص معينة، وأخيراً أنتج المسبع من المثلث المنشأ. واشتهر أبو سهل القوهي أيضاً باكتشافه لأسلوب تقسيم زاوية معينة إلى ثلاثة أقسام متساوية. عالم معاصر له هو عبد الجليل السجزي أشار إلى هذا الاكتشاف، ووصفه بقوله: «قضية أبي سهل القوهي المساعدة» واستخدمها في إنشاء مضلع ذي تسعة أضلاع، أي «التساعي».
كان صانعو الأدوات بحاجة إلى القطوع المخروطية لحفرها على سطوح الساعات الشمسية، وكان الإغريق يعلمون «أن الشمس تسير في مسارها الدائري عبر السماء في أثناء النهار، فتمر إشعاعاتها فوق رأس قضيب شاقولي مغروز في الأرض، فتشكل مخروطاً مزدوجاً، وبما أن مستوى الأفق يقطع جزئي المخروط فإن مقطع المخروط مع مستوى الأفق لا بد أن يكون قطعاً زائداً»، فحفز ذلك ميول إبراهيم بن سنان، حفيد ثابت بن قرة، فأجرى دراسة للموضوع، لكن حياته انتهت مبكراً بسبب ورم في كبده أدى إلى وفاته عام 946م وهو في السابعة والثلاثين من عمره، ومع ذلك فقد «أكدت أعماله الباقية شهرته ليكون شخصية مهمة في تاريخ الرياضيات» كما يقول مؤرخ العلوم المعاصر ج. ل. بيرغرين الذي لخص إنجازات إبراهيم بن سنان على النحو الآتي:
«إن معالجته لمساحة قطاع من القطع الزائد أبسط من كل ما جاءنا منذ ما قبل عصر النهضة، ففي عمله المتعلق بالساعات الشمسية يعالج تصميم أنواع المزاول (الساعات الشمسية) المحتملة وفق إجراء واحد موحد، يمثل هجوماً على الإشكالات التي لم ينجح بها أسلافه في غالب الأحيان.»
كان المهندسون المسلمون مهتمين بإبراز الأهليّة في مهنة الفنانين واستكشاف فنهم بما يقومون به من تصاميم هندسية قد تزين المرافق العامة كالمساجد والقصور ودور الكتب؛ فأبو نصر الفارابي (المتوفى عام 950م) المشهور بالفلسفة والموسيقى وتعليقاته على أرسطو، كتب مقالة في الإنشاءات الهندسية من وسائل ذات قيود متنوعة ووضع له عنواناً غريباً نوعاً ما هو «الأسرار الطبيعية في دقائق الأشكال الهندسية»، وعندما توفي أدخل أبو الوفاء البوزجاني مقالة الفارابي في كتابه "كتاب فيما يحتاج إليه الصناع في أعمال الهندسة" وقدم تفاصيل إنشائية وتعليلات كاملة. إن المسائل التي ركز أبو الوفاء اهتمامه بها شملت مسألة إنشاء عمود على قطاع مفترض وعلى طرفيه؛ مُقسّماً القطاع الخطي إلى أي عدد من الأقسام المتساوية، وإنشاء مربع ضمن دائرة معينة ومضلعات منتظمة متنوعة (ذات 3، 4، 5، 6، 8، 10 أضلاع)، وكانت هذه الإنشاءات كلها تتم فقط بحافة مستقيمة وفرجار ذي فتحة مثبتة واحدة.
تعليقات
إرسال تعليق